零部件生产商

数字信号处理概念 「博文精选」谈谈数字信号这个概念

小编 2024-11-23 零部件生产商 23 0

「博文精选」谈谈数字信号这个概念

数字信号看似一个非常常规而成熟的概念,其实含有很大的混淆。今天就来大概谈谈这个概念,和大家讨论。

按照我们通常的定义,数字信号是指幅度和时间都离散的信号叫“数字信号”。而很多书里面也说处理数字信号的电路就是数字电路。其实真的是这样吗?之前被我带过的女生质问过说她认为什么Digital Sensor、Digital LDO都是假的,因为这些电路处理的都是“模拟信号”。所以这些都是“模拟电路”。她觉得她当时做的课题不是“做数字”,因此对此很不满意。当时由于很多问题没想清楚,也不想和她深入争论这个问题。但现在得空了,就来好好分析一下这个问题。

这事首先要讨论一个问题。什么叫信号(Signal)。按照信号与系统的定义,信号是传递有关一些现象的行为或属性的信息的函数。而这个函数通常自变量是时间或者是位置。随着时间连续变化的信号,那么背定义为模拟信号。而不是随着时间连续变化,也就是间隔一段时间(通常为固定周期)变化的信号,其实就是离散时间信号。而如果离散时间信号只有有限个取值的,就是数字信号。所以我们谈数字信号,实际上谈的是信号本身的一种属性或者数学上的特征。如果抽象的来谈信号,其实就是一个数学上的函数的概念。一个数(自变量)与数(因变量)的关系。

但从另外一方面来讲,信号是必须有载体的。是要有物理的现成才能把信号表示出来。现实世界的物理现象(宏观上的)如果以时间为自变量,那么绝大部分都可以表示成某种物理量的变化过程。而这种变化过程中,时间是连续变化的而物理量也是连续变化的。这显然是一种模拟信号。例如温度的变化,飞机速度的变化等等。自然界有没有天生的数字信号?应该是没有的。但是应该是极其特定的条件下有天生的离散时间信号。此刻我的脑子里就浮现出来了一个匀速跳跃的青蛙。它的位移量应该是一个离散时间信号……(我是不是不知不觉又续了?)

如果我们要对这些信号加以记录和处理,我们应该是先把这些信号转变为电信号。这个转换的过程就叫做“传感”。执行这个过程的器件叫做传感器。传感器把某种物理量转变成了以电压或者电流表示的信号。这个信号是对现实世界物理量的“复刻”或者说“再现”,因此这个也符合模拟信号的特点。

我们也知道我们要把模拟信号用数字信号处理的办法来求解,是要把模拟信号用数字信号来表示。那么第一步就是要把模拟信号由时间上连续变为时间上离散的。大家都知道这个过程叫做采样。采样完了的信号时间上是离散的,间隔了若干周期才变化。但是因变量的取值仍然是随意的。那么在接下来的过程中,通过把这些因变量映射到固定的数值上去。这个过程上叫量化。但是这个量化,在实际的物理过程上就有问题了。按理说量化完了,这个信号就已经是自变量也离散,因变量也离散了。最后就应该是数字信号了啊。但是为什么我们的AD转换过程应该三步:采样、量化、编码啊(严格说来是四步:采样、保持、量化、编码,但是这个保持的过程是做ADC电路设计时候才考虑的)。这就涉及到一个问题:那就是数字信号的“表征”问题。

既然数字信号是自变量和应变量都是离散的。那我们其实最直观的想到的就是用一个有有限个幅度值的脉冲信号来表征它。比如1就是1V,2就是2V,3就是3V……事实上,在数模转换中,我们其实是把常规的数字信号转换成了这种类型的脉冲。但我们在真实的系统中并没有用这种方法来表征数字信号,而是采用了的一套二进制的数值系统来表征这个数字信号。这个二进制的数值系统是采用多个二值信号+权重的方式来表示数值的。所以我们知道了,编码的过程,本质上是将数字信号转换为以特定的二进制数值系统表征的过程。当然,也可以考虑将其转换为多进制(如苏联大力研制的三进制)或者其它体系的数值系统(如余数系统、随机数等)。而所谓的“数字信号处理”,实际上是对已经被某种数值系统表示出来的数字信号加以计算。本质上是在用“数值计算”的方法来处理。常规的“数值计算”自然是二进制的加减运算了。而如果表示为非常规的数值系统,其实也可以做数值计算。比如余数系统就是前几年大热的一种数值系统,很多做信号处理电路的人是在这个层面上做创新。发了(水了)不少论文。

回过头来说。构成这个二进制数值系统的根基,是二值化的特定信号。这种信号显然是一种数字信号(时间上离散,取值只有两种)。所以大家讲数字信号的时候往往是在讲这种信号。但这并不是数字信号的全部。但恰恰又是我们通常以这种二值信号为基础构建的二进制数值系统来表征了数字信号,从而产生了概念上的混淆。

最后回到当年那个女生问我的问题。现在我应该翻过来回答,凡是电路的工作过程中,信号的变化过程是以时间离散且应变量离散的方式进行的,都应该是Digital的。比如 Digital LDO,就是把LDO的变化从连续的可调,变为了通过在时间上开关一组LDO。从连续的控制变成了时间也离散,因变量也离散的控制。这种当然当得起“Digital”的名。

至于数值系统的事,回头再聊。

招聘信息

回顾数字信号处理的基本原理

介绍

由于我们在本书中讨论的语音处理方案和技术本质上是离散时间信号处理系统,因此读者必须对数字信号处理的基本技术有很好的理解。在本章中,我们简要回顾了与语音信号数字处理最相关的数字信号处理概念。本文旨在为以后的章节提供方便的参考,并确定将在整本书中使用的符号。那些完全不了解离散时间信号和系统的表示和分析技术的读者可能会发现,当本章未提供足够详细的信息时,可以查阅有关数字信号处理的教科书[245、270、305]。

离散时间信号和系统

在涉及信息处理或通信的几乎每种情况下,自然都会从将信号表示为连续变化的模式或波形开始。人类语音中产生的声波无疑是这种性质的。在数学上方便的是,将这种连续变化的模式表示为代表时间的连续变量t的函数。我们使用xa(t)形式的标记来表示连续变化(或模拟)的时间波形。就像我们将看到的那样,还可以将语音信号表示为一系列(量化的)数字。实际上,这是本书的中心主题之一。通常,我们使用x [n]形式的表示法来表示在时间和幅度上均已量化的序列。如果像采样语音信号一样,一个序列可以看作是一个采样周期为T的周期采样的模拟信号的采样序列,那么我们通常发现使用x []来明确指出这一点很有用。 n] = xa(nT)对于通过采样和量化从模拟波形得出的任何数字序列,有两个变量决定离散表示的性质,即采样率Fs = 1 / T和量化级数,在图2B中,B是表示的每个样本的位数。尽管可以将采样率设置为满足Fs = 1 / T> 2Fv(其中Fv是连续时间信号中出现的最高频率)的关系的任何值,但是语音的各种“自然”采样率已经随着时间而发展。包括:对于电话带宽语音(FN = 3.2 kHz)为1Fs = 6.4 kHz;对于扩展电话带宽语音(FN = 4 kHz)为F = 8 kHz;对于过采样的电话带宽语音(Fy = 5 kHz)为Fs = 10 kHz:对于宽带(hi-f)带宽语音(FN = 8 kHz),F,= 16 kHz。语音信号的数字表示中的第二个变量是量化信号的每个样本的位数。在第11章中,我们将研究量化对数字化语音波形特性的详细影响。但是,在oresent一章中,我们假设采样值未量化。图2.1展示了一个语音信号的示例,该语音信号既以模拟信号形式,又以Fs = 16 kHz的采样率表示为一系列采样。在随后

图2.1语音波形图:(a)绘制为连续时间信号(使用MATLAB plot()函数);(b)绘制为采样信号(使用MATLAB stem()函数).1如第2.3节所述,我们使用大写字母表示模拟频率,如[270]中所示。

当然,即使考虑了离散表示,绘制的便利性也通常要求使用模拟表示(即连续函数)。在这种情况下,连续曲线是样本序列的包络,样本通过笔直连接。图2.1显示了MATLAB函数图(对于图顶部是模拟波形)和主干(对于图底部是离散样本集)的使用。它也说明了有关采样信号的重要一点。当绘制一个样本序列作为样本索引的函数时,时间尺度就会丢失。现在我们必须采样率为Fs = 1 / T = 16 kHz,以便通过采样周期T = 62.5 us将数字波形的持续时间(在这种情况下为320个采样)转换为20毫秒的模拟时间间隔在我们对数字语音处理系统的研究中,我们会发现许多重复出现的特殊序列。图2.2中描绘了其中的几个序列。图2.2a中所示的单位样本或单位冲量序列定义为

INTRODUCTION

Since the speech processing schemes and techniques that we discuss in this book are intrinsically discrete-time signal processing systems, it is essential that the reader have a good understanding of the basic techniques of digital signal processing. In this chapter we present a brief review of the concepts in digital signal processing that are most relevant to digital processing of speech signals. This review is intended to serve as a convenient reference for later chapters and to establish the notation that will be used throughout the book. Those readers who are completely unfamiliar with techniques fo representation and analvsis of discrete-time signals and systems may find it worthwhile to consult a textbook on digital signal processing [245, 270, 305] when this chapter does not provide sufficient detail.

DISCRETE-TIME SIGNALS AND SYSTEMS

In almost every situation involving information processing or communication, it is natural to begin with a representation of the signal as a continuously varying pattern or waveform. The acoustic wave produced in human speech is most certainly of this nature. It is mathematically convenient to represent such continuously varying patterns as functions of a continuous variable t, which represents time. We use notatior of the form xa(t) to denote continuously varying (or analog) time waveforms. As we will see, it is also possible to represent the speech signal as a sequence of (quantized) numbers; indeed, that is one of the central themes of this book. In general we use notation of the form, x[n], to denote sequences, quantized in both time and amplitude. If, as is the case for sampled speech signals, a sequence can be thought of as a sequence of samples of an analog signal taken periodically with sampling period, T, then we generally find it useful to explicitly indicate this by using the notation x[n]=xa(nT) For any digital sequence derived from an analog waveform via sampling and quantization, there are two variables that determine the nature of the discrete representation, namely the sampling rate Fs =1/T and the number of quantization levels, 2B where B is the number of bits per sample of the representation. Although the sampling rate can be set to any value that satisfies the relation that Fs= 1/T >2Fv (where Fv is the highest frequency present in the continuous-time signal), various "natural" sampling rates for speech have evolved over time, including:1Fs = 6.4 kHz for telephone bandwidth speech (FN = 3.2 kHz);F = 8 kHz for extended telephone bandwidth speech (FN =4 kHz);Fs = 10 kHz for oversampled telephone bandwidth speech (Fy =5 kHz): F, = 16 kHz for wideband (hi-f) bandwidth speech (FN =8 kHz).The second variable in the digital representation of speech signals is the number of bits per sample for the quantized signal. In Chapter 11, we will study the detailed effects of quantization on the properties of the digitized speech waveform; however, in the oresent chapter, we assume that the sample values are unquantized Figure 2.1 shows an example of a speech signal represented both as an analog signal and as a sequence of samples at a sampling rate of Fs = 16 kHz. In subsequent

FIGURE 2.1Plots of a speech waveform: (a) plotted as a continuous-time signal (with MATLAB plot ( ) function);(b) plotted as a sampled signal (with MATLAB stem( ) function).1As discussed in Section 2.3, we use capital letters to denote analog frequencies as in [270].

gures, convenience in plotting generally dictates the use of the analog representation (i.e., continuous functions) even when the discrete representation is being considered.In such cases, the continuous curve is the envelope of the sequence of samples, with the samples connected by straight lines for plotting (linear interpolation).2 Figure 2.1 illustrates the use of the MATLAB function plot (for the analog waveform at the top of the figure) and stem (for the set of discrete samples at the bottom of the figure). It also illustrates an important point about sampled signals in general; when a sequence of samples is plotted as a function of sample index, the time scale is lost. We must now the sampling rate, Fs = 1/T = 16 kHz, in order to convert the time duration of the digital waveform (320 samples in this case) to the analog time interval of 20 msec via the sampling period T = 62.5 us.In our study of digital speech processing systems, we will find a number of special sequences repeatedly arising. Several of these sequences are depicted in Figure 2.2.The unit sample or unit impulse sequence, shown in Figure 2.2a, is defined as

INTRODUCTION

介绍

Since the speech processing schemes and techniques that we discuss in this book are intrinsically discrete-time signal processing systems, it is essential that the reader have a good understanding of the basic techniques of digital signal processing.

由于我们在本书中讨论的语音处理方案和技术本质上是离散时间信号处理系统,因此读者必须对数字信号处理的基本技术有一个很好的理解。

In this chapter we present a brief review of the concepts in digital signal processing that are most relevant to digital processing of speech signals.

在这一章中,我们简要回顾了与语音信号数字处理最相关的数字信号处理的概念。

This review is intended to serve as a convenient reference for later chapters and to establish the notation that will be used throughout the book.

这篇评论的目的是为以后的章节提供一个方便的参考,并建立将在整本书中使用的记号。

Those readers who are completely unfamiliar with techniques fo representation and analvsis of discrete-time signals and systems may find it worthwhile to consult a textbook on digital signal processing [245, 270, 305] when this chapter does not provide sufficient detail.

那些完全不熟悉离散时间信号和系统的表示和分析技术的读者可能会发现,当本章没有提供足够的细节时,值得查阅关于数字信号处理的教科书[245,270,305]。

DISCRETE-TIME SIGNALS AND SYSTEMS

离散时间信号和系统

In almost every situation involving information processing or communication, it is natural to begin with a representation of the signal as a continuously varying pattern or waveform.

在几乎所有涉及信息处理或通信的情况下,很自然地,首先要把信号表示为连续变化的模式或波形。

The acoustic wave produced in human speech is most certainly of this nature.

人类语言中产生的声波肯定是这种性质的。

It is mathematically convenient to represent such continuously varying patterns as functions of a continuous variable t, which represents time.

用连续变量t的函数来表示这种连续变化的模式在数学上是很方便的,t代表时间。

We use notatior of the form xa(t) to denote continuously varying (or analog) time waveforms.

我们使用形式为xa(t)的符号来表示连续变化(或模拟)的时间波形。

As we will see, it is also possible to represent the speech signal as a sequence of (quantized) numbers;

正如我们将看到的,也可以将语音信号表示为(量化的)数字序列;

indeed, that is one of the central themes of this book.

事实上,这是本书的中心主题之一。

In general we use notation of the form, x[n], to denote sequences, quantized in both time and amplitude.

一般来说,我们使用x[n]这种形式的符号来表示序列,在时间和幅度上都量子化。

If, as is the case for sampled speech signals, a sequence can be thought of as a sequence of samples of an analog signal taken periodically with sampling period, T, then we generally find it useful to explicitly indicate this by using the notation x[n]=xa(nT) For any digital sequence derived from an analog waveform via sampling and quantization, there are two variables that determine the nature of the discrete representation,

如果是语音信号采样的情况下,一个序列可以看作是一系列的模拟信号采集样本定期与采样周期T,然后我们通常发现它有用的来显式地指示使用符号x [n] = xa (nT)对于任何一个数字序列来自一个模拟波形通过采样和量化,有两个变量,确定离散形式的性质,

namely the sampling rate Fs =1/T and the number of quantization levels, 2B where B is the number of bits per sample of the representation.

即采样率Fs =1/T和量化级别数,2B,其中B是表示的每个样本的位数。

Although the sampling rate can be set to any value that satisfies the relation that Fs= 1/T >2Fv (where Fv is the highest frequency present in the continuous-time signal), various "natural" sampling rates for speech have evolved over time, including:1Fs = 6.4 kHz for telephone bandwidth speech (FN = 3.2 kHz);F = 8 kHz for extended telephone bandwidth speech (FN =4 kHz);Fs = 10 kHz for oversampled telephone bandwidth speech (Fy =5 kHz):

虽然采样率可以设置为任何值满足Fs = 1 / T比的关系;2艘渔船(阵线是最高频率出现在连续时间信号),各种“自然”抽样率的演讲已经随着时间的推移,包括:电话1 F = 6.4千赫带宽演讲(FN = 3.2 kHz); F = 8 kHz长电话带宽演讲(FN = 4 kHz); Fs = 10 kHz的采样过量电话带宽演讲(= 5 kHz财政年度):

F, = 16 kHz for wideband (hi-f) bandwidth speech (FN =8 kHz).

F, = 16 kHz的宽带(hi-f)带宽语音(FN =8 kHz)。

The second variable in the digital representation of speech signals is the number of bits per sample for the quantized signal.

语音信号的数字表示的第二个变量是量化信号的每个样本的位数。

In Chapter 11, we will study the detailed effects of quantization on the properties of the digitized speech waveform;

在第11章中,我们将详细研究量化对数字化语音波形特性的影响;

however, in the oresent chapter, we assume that the sample values are unquantized Figure 2.1 shows an example of a speech signal represented both as an analog signal and as a sequence of samples at a sampling rate of Fs = 16 kHz.

然而,在本章中,我们假设样本值是未量化的。图2.1显示了一个语音信号的例子,该信号既表示为模拟信号,也表示为Fs = 16khz采样率下的一系列样本。

In subsequent

在随后的

FIGURE 2.1Plots of a speech waveform: (a) plotted as a continuous-time signal (with MATLAB plot ( ) function);(b) plotted as a sampled signal (with MATLAB stem( ) function).

图2.1语音波形图:(a)连续时间信号(用MATLAB plot()函数绘制);(b)采样信号(用MATLAB stem()函数绘制)

1As discussed in Section 2.3, we use capital letters to denote analog frequencies as in [270].

正如第2.3节所讨论的,我们用大写字母来表示[270]中的模拟频率。

gures, convenience in plotting generally dictates the use of the analog representation (i.e., continuous functions) even when the discrete representation is being considered.

图形,绘图的方便性通常要求使用模拟表示(即连续函数),即使是在考虑离散表示时。

In such cases, the continuous curve is the envelope of the sequence of samples, with the samples connected by straight lines for plotting (linear interpolation).

在这种情况下,连续的曲线就是样本序列的包络,用直线连接样本进行绘图(线性插值)。

2 Figure 2.1 illustrates the use of the MATLAB function plot (for the analog waveform at the top of the figure) and stem (for the set of discrete samples at the bottom of the figure).

2图2.1说明了MATLAB函数图(用于图顶部的模拟波形)和stem(用于图底部的离散样本集)的使用。

It also illustrates an important point about sampled signals in general;

阐述了一般采样信号的一个重要问题;

when a sequence of samples is plotted as a function of sample index, the time scale is lost.

当一个样本序列被绘制成样本指数的函数时,时间尺度就丢失了。

We must now the sampling rate, Fs = 1/T = 16 kHz, in order to convert the time duration of the digital waveform (320 samples in this case) to the analog time interval of 20 msec via the sampling period T = 62.5 us.

我们必须现在的采样率,Fs = 1/T = 16 kHz,以便通过采样周期T = 62.5 us将数字波形(本例中为320个样本)的持续时间转换为20 msec的模拟时间间隔。

In our study of digital speech processing systems, we will find a number of special sequences repeatedly arising.

在我们对数字语音处理系统的研究中,我们会发现一些特殊序列反复出现。

Several of these sequences are depicted in Figure 2.2.

图2.2描述了其中几个序列。

The unit sample or unit impulse sequence, shown in Figure 2.2a, is defined as

图2.2a所示的单位样本或单位脉冲序列定义为

相关问答

什么叫数字频率数字信号处理里面的_作业帮

[最佳回答]如果没记错的话DSP里面的数字频率是指每一个数字信号出现时间周期的倒数,也就是1秒钟内出现数字信号的个数.如果没记错的话DSP里面的数字频率是指...

【数字信号与模拟信号的区别是什么?】作业帮

[最佳回答]信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号.模拟信号与数字信号的区别可根据幅度取什...

信号处理是什么意思?

它信号理论基础,比如我们手机信号,首先为话音信号经过无限空间传输才到达另一个人的手机。不处理信号容易受到各种噪音的影响,所以需要知道信号经过一个系统之...

wp在数字信号处理中含义?

在数字信号处理中,"wp"通常指的是"角频率"(angularfrequency)。角频率是指单位时间内一个周期内的角度变化量,通常以弧度/秒(rad/s)表...

有谁能总结一下数字信号处理中零点与极点?

分子上为0就是零点分母上为0就是极点分子分母都有相同的零极点就可以消除下来就是单位圆上运动表示为所有与0点长度的乘积除以所有与极点长度的乘积来体现滤...

数字信号和模拟信号的概念?

数字信号和模拟信号是两种基本的信号形式,它们在通信、控制系统等领域有着广泛的应用。模拟信号是指信号的幅度、频率或相位随时间连续变化的信号,例如声音、...

数字信号处理和信号与系统两门课有区别吗?

就先行的教材体系来说肯定是有区别的,“数字信号处理”一般电子通信相关专业本科都有开设,本科的“数字信号处理”主要解决确定性离散信号的频谱分析、滤波理...

数字电路和微机原理作业一、填空题1.数字信号有()和()两种形...

[最佳回答]一、1.电位脉冲2.数字模拟3.数字在计算机中整数,实数,真值二、1.22162.111001C3.7271EB94.771154D5.00100111一、1.电位脉...

什么是数据信号和模拟信号?

模拟信号是指用连续变化的物理量表示的信息,其信号的幅度,或频率,或相位随时间作连续变化,或在一段连续的时间间隔内,其代表信息的特征量可以在任意瞬间呈现...

什么是信号?信号处理的目的是什么?

信号是表示消息的物理量,如电信号可以通过幅度、频率、相位的变化来表示不同的消息。这种电信号有模拟信号和数字信号两类。信号是运载消息的工具,是消息的载...

猜你喜欢