一步让你明白fpga数字信号处理
fpga数字信号处理
Verilog根本电路设计之一:单bit跨时钟域同步
\\\插播一条:
自己在今年整理一套单片机单片机相关论文800余篇(附送网盘链接)
论文制作思维导图
原理图+源代码+开题报告+正文+外文资料
想要的同学私信找我。
Verilog基本电路设计(包括:时钟域同步、无缝切换、异步FIFO、去抖滤波))
首先介绍异步信号的跨时钟域同步问题。一般分为单bit的控制信号同步,以及多bit的数据信号同步。多bit的信号同步会使用异步FIFO完成,而单bit的信号同步,又是时钟没缝切换电路以及异步FIFO电路的设计根底,这里先介绍单bit信号同步处理。clka域下的信号signal_a,向异步的clkb域传递时,会产生亚稳态问题。所有的亚稳态,归根结底就是setup/hold时长不满足导致。在同一个时钟域下的信号,综合以及布线工具能够在data路径或者clock路径上插入buffer使得每一个DFF的setup/hold时长都满足;但是当signal_a在clkb域下使用时,由于clka与clkb异步,它们的相位关系不确定,那么在clkb的时钟沿到来时,没法确定signal_a此时是否处于稳定没变化状态,也即setup/hold时长没法确定,从而产生亚稳态。这种异步信号在前后端流程里面是没法做时序分析的,也就是静态时序分析里常说的false_path。打消亚稳态,就是采用多级DFF来采样来自另一个时钟域的信号,级数越多,同步过来的信号越稳定。对于频次很高的设计,建议至少用三级DFF,而两级DFF同步则是所有异步信号处理的最根本要求。单bit的信号跨时钟域同步,又分成电平信号同步以及脉冲信号同步。电平信号,就是说clka下的信号signal_a在clkb看来,是一个很宽的信号,会保持多个clkb的时钟周期,一定能被clkb采到。这种情况,只须要使用clkb用至少两级DFF不间断抓signal_a即可,特别须要强调的是,此时signal_a必需是clka下的寄存器信号,假如signal_a是clka下的组合逻辑信号,一定要先在clka下用DFF抓一拍,再使用两级DFF向clkb传递。这是由于clka下的组合逻辑信号会有毛刺,在clka下使用时会由setup/hold时长保证毛刺不会被clka采到,但由于异步相位不确定,组合逻辑的毛刺却极有可能被clkb采到。电平信号的同步处
私信我绿色软件airuimcu
理,一般用于知道确定的时钟频率大小关系或者极慢时钟下的信号向极快时钟域传递时使用,简单处理如下:
always @ (posedge clkb or negedge rst_n)beginif (!rst_n) beginlevl_b_d1 levl_b_d2 levl_b_d3 endelse beginlevl_b_d1 levl_b_d2 levl_b_d3 endendassign puls_b_pos = levl_b_d2 & (~levl_b_d3);
assign puls_b_neg = levl_b_d3 & (~levl_b_d2);assign levl_b_out = levl_b_d2;
上面三个输出分别是经过同步之后,clkb下可以使用的0变1脉冲信号,1变0脉冲信号以及电平信号。再次强调:levl_a_in必须是clka的DFF信号!下面是更常见的,clka下的脉冲信号,同步到clkb时钟域下,它对于clka与clkb的时钟频率关系没有任何限制,快到慢,慢到快都没问题。其主要原理就是先把脉冲信号在clka下展宽,变成电平信号,再向clkb传递,当确认clkb已经“看见”信号同步过去之后,再清掉clka下的电平信号。脉冲信号同步处理电路,有两个地方使用了上面的电平信号同步处理原则,请仔细揣摩原因。详细见下面的RTL,其中省略了信号定义声明:
module sync_pulse (// inputrst_n, // system resetclka, // clockAclkb, // clockBpuls_a_in, // pulse input from clka// outputpuls_b_out, // pulse output in clkblevl_b_out // level output in clkb);parameter DLY = 1; //always @ (posedge clka or negedge rst_n)beginif (rst_n == 1'b0)signal_a else if (puls_a_in)signal_a else if (signal_b1_a2)signal_a else ;endalways @ (posedge clkb or negedge rst_n)beginif (rst_n == 1'b0)signal_b elsesignal_b endalways @ (posedge clkb or negedge rst_n)beginif (rst_n == 1'b0) beginsignal_b_b1 signal_b_b2 endelse beginsignal_b_b1 signal_b_b2 endendalways @ (posedge clka or negedge rst_n)beginif (rst_n == 1'b0) beginsignal_b1_a1 signal_b1_a2 endelse beginsignal_b1_a1 signal_b1_a2 endendassign puls_b_out = signal_b_b1 & (~signal_b_b2) ;assign levl_b_out = signal_b_b1 ;endmodule
下一篇讲时钟切换电路。留下一个思考题:clka下的同一个寄存器信号signal_a,电平宽度对clkb而言足够长,如果同时调用两个相同的电平同步模块向clkb时钟传递,分别得到levl_b1和levl_b2,那么在clkb时钟域下看到的lev_b1和levl_b2信号是否一样?这个问题是实际设计中一不小心就会犯错的,如果能够想明白正确回答这个问题,异步信号的理解就可以过关了。
Verilog基本电路设计之二:时钟无缝切换
时钟切换分成两种方式,普通切换和去毛刺无缝切换。普通切换,就是不关心切出的时钟是否存在毛刺,这种方式电路成本小。如果时钟切换时,使用此时钟的模块电路处于非工作状态,或者模块内电路被全局复位信号reset住的,即使切出毛刺也不会导致DFF误触发,这样的模块可以选择用此种切换方式。写法很简单 assign clk_o = sel_clkb ? clkb : clka ,当sel_clkb为1时选择clkb,否则选择clka。不过在实际设计中,建议直接调用库里的MUX单元set_dont_touch,不要采用这里的assign写法,因为这种写法最后综合得到的可能不是MUX而是复杂组合逻辑,给前后端流程的时钟约束和分析带来不便。无缝切换,就是切换时无毛刺时钟平稳过渡。在时钟切换中,只要出现比clka或者clkb频率更高的窄脉冲,不论是窄的高电平还是窄的低电平,都叫时钟毛刺。工作在切换后时钟clk_o下的电路模块,综合约束是在max{clka,clkb}频率下的,也就是说设计最后signoff的时候,只保证电路可以稳定工作的最高频率是max{clka,clkb},如果切换中出现更高频的时钟毛刺,电路可能出现无法预知的结果而出错。无缝切换,一般用在处于工作状态的模块需要调频或者切换时钟源,比如内部系统总线,CPU等。你刚用手机打完游戏后马上关屏听音乐,这两种场景中,CPU在满足性能前提下为了控制功耗,其工作频率会动态地从很高调至较低,此时就可能是在CPU一直处于工作状态下,通过无缝切换时钟源头实现的。在无缝切换电路中,切换信号sel_clkb可以是任意时钟域下的信号,包括但不限于clka或者clkb域,但是sel_clkb必须是一个DFF输出信号;clka与clkb的频率大小相位关系可以任意。无缝切换需要解决两个问题,一是异步切换信号的跨时钟域同步问题,这里需要使用《Verilog基本电路设计之一》里的同步电路原理消除亚稳态;二是同步好了的切换信号与时钟信号如何做逻辑,才能实现无毛刺。下面写出无缝切换电路的主体部分,忽略了内部信号的定义声明等。
module clk_switch (rst_n,clka,clkb,sel_clkb,clk_o);always @ (posedge clka or negedge rst_n)beginif (!rst_n) beginsel_clka_d0 sel_clka_d1
endelse beginsel_clka_d0 sel_clka_d1 endend// part2//always @ (posedge clka_n or negedge rst_n)always @ (posedge clka or negedge rst_n)beginif (!rst_n) beginsel_clka_dly1 sel_clka_dly2 sel_clka_dly3 endelse beginsel_clka_dly1 sel_clka_dly2 sel_clka_dly3 endend// part3//always @ (posedge clkb_n or negedge rst_n)always @ (posedge clkb or negedge rst_n)beginif (!rst_n) beginsel_clkb_d0 sel_clkb_d1 endelse beginsel_clkb_d0 sel_clkb_d1 endend// part4//always @ (posedge clkb_n or negedge rst_n)always @ (posedge clkb or negedge rst_n)beginif (!rst_n) beginsel_clkb_dly1 sel_clkb_dly2 sel_clkb_dly3 endelse beginsel_clkb_dly1 sel_clkb_dly2 sel_clkb_dly3 endend// part5clk_gate_xxx clk_gate_a ( .CP(clka), .EN(sel_clka_dly3), .Q(clka_g) .TE(1'b0) );clk_gate_xxx clk_gate_b ( .CP(clkb), .EN(sel_clkb_dly3), .Q(clkb_g) .TE(1'b0) );//assign clka_g = clka & sel_clka_dly3 ;//assign clkb_g = clkb & sel_clkb_dly3 ;assign clk_o = clka_g | clkb_g ;endmodule
上面是我认为比较合理的无缝切换电路,其他切换方式跟这个会有些许出入,但基本大同小异原理是一样的。有几点说明:1、抛开注释掉的电路不看,由于part5部分直接调用库里的clock gating cell,使得整个切换电路全部只需要用到时钟上升沿,无需额外定义反向时钟,精简了DC综合的时钟约束;直接调用gating cell的另一个好处是,前后端工具会自动检查gating cell的CP信号与EN信号的setup/hold时间,使得gating后的Q时钟输出无毛刺尖峰。TE端可以根据实际需要接上scan测试模式信号。如果使用part5部分的gating cell实现,前面的part1,2,3,4全部替换成注释掉的反相时钟也是没有问题。2、part2和part4部分,具体需要多少级DFF,甚至完全不要也是可以的,这就回到了《Verilog基本电路设计之一》里讨论的到底多少级DFF消除亚稳态才算合理的问题。时钟频率很低可能无所谓,如果时钟频率达到GHz,这部分建议至少保留三级DFF,因为三级DFF延时也仅仅只有3ns的时间裕度。没必要为了省这么几个DFF降低电路可靠性,在复杂IP以及大型SOC系统中,你会发现多几十个DFF,面积上可以忽略,系统可靠性和稳定性才是首要的。3、如果part5部分希望使用注释掉的两行“与”逻辑实现时钟gating,此时part1与part3使用正相或者反相时钟都可以,但是必须把part2和part4部分改为注释掉的反相时钟实现,目的是初步从RTL设计上避免“与”逻辑的毛刺,同时还需要后端配合,因为很多后端工具对时钟“与”逻辑的clock gating check未必会检查。用clk下降沿拍出的en信号,再跟clk做与逻辑得到的门控时钟,在RTL仿真阶段看到的一定不会有毛刺,但是布线完成后,如果clk相对en后移,那与逻辑得到的门控时钟就有毛刺了。这就是用与逻辑做门控的缺点,由于后端工具可能不会去检查这个与门的时序关系而导致出错。但直接调用库里的gating cell,工具天然就会去检查这个时序,免去人工确认的后顾之忧。最后,请大家仔细看看sel_clka_d0 和sel_clkb_d0 这两处逻辑,按理说,sel_clkb跟sel_clka_dly3以及sel_clkb_dly3之间相互都是异步的,而按照异步信号同步处理原则,两个不同时钟域下的信号是不允许直接做组合逻辑的,为什么这里可以这样使用?
Verilog基本电路设计之三:异步FIFO
FIFO用于为匹配读写速度而设置的数据缓冲buffer,当读写时钟异步时,就是异步FIFO。多bit的数据信号,并不是直接从写时钟域同步到读时钟域的,而是读写时钟域分别派遣了一个信使,去通知对方时钟域,当前本方所处的读写情况,来判断还能不能写以及可不可以读,这两个信使就是读写指针。在《Verilog基本电路设计之一》里已讨论过,即使单bit的异步信号,通过两个相同的同步电路,达到clkb域时都可能“长”的不是一个模样,更加不用说多bit的异步信号同时传递到clkb域会变成什么五花八门的模样了。这里读写指针不是单bit信号,它们如何向对方时钟域去同步呢?格雷码!它的特点是每次只有一个bit发生变化,这样就把多bit信号同步转变为了单bit信号同步,这也是为什么多bit的格雷码信号,可以类似于单bit信号那样,直接使用两级DFF去同步的根本原因。下面给出异步FIFO的主体部分,同样,省略了信号声明定义。module asyn_fifo (// inputaf_wclk , // async-FIFO clear in write clockaf_rclk , // async-FIFO clear in read clockrst_n, // system resetaf_wr_en, // async-FIFO write enableaf_rd_en, // async-FIFO read enableaf_dati, // async-FIFO data in//output af_full , // Async-FIFO full flagaf_empty, // Async-FIFO empty flagaf_dato // Async-FIFO data out);//------------------------- data input --------------------------assign nxt_wptr_wclk = (af_wr_en && !af_full) ? (wptr_wclk + 1'b1) : wptr_wclk ;assign nxt_wptr_gray = (nxt_wptr_wclk >> 1) ^ nxt_wptr_wclk ;always @ (posedge af_wclk or negedge rst_n)beginif (rst_n == 1'b0) beginwptr_wclk wptr_gray endelse beginwptr_wclk wptr_gray endendreg [31:0] ram[15:0] ; //always @ (posedge af_wclk)beginif (af_wr_en == 1'b1)ram[wptr_wclk[3:0]] else ;end//------------------------ data output ---------------------------assign nxt_rptr_rclk = (af_rd_en && !af_empty) ? (rptr_rclk + 1'b1) : rptr_rclk ;assign nxt_rptr_gray = (nxt_rptr_rclk >> 1) ^ nxt_rptr_rclk ;always @ (posedge af_rclk or negedge rst_n)beginif (rst_n == 1'b0) beginrptr_rclk rptr_gray endelse beginrptr_rclk rptr_gray endendassign af_dato = ram[rptr_rclk[3:0]] ;// sync read pointeralways @ (posedge af_wclk or negedge rst_n)beginif (rst_n == 1'b0) beginrptr_sp1 rptr_sp2 endelse beginrptr_sp1 rptr_sp2 endend// sync write pointeralways @ (posedge af_rclk or negedge rst_n)beginif (rst_n == 1'b0) beginwptr_sp1 wptr_sp2 endelse beginwptr_sp1 wptr_sp2 endendassign af_full = (wptr_gray == {~rptr_sp2[4],~rptr_sp2[3],rptr_sp2[2:0]}) ;assign af_empty = (rptr_gray == wptr_sp2) ;assign wptr_bin[4] = wptr_sp2[4] ;assign wptr_bin[3] = (^wptr_sp2[4:3]) ;assign wptr_bin[2] = (^wptr_sp2[4:2]) ;assign wptr_bin[1] = (^wptr_sp2[4:1]) ;assign wptr_bin[0] = (^wptr_sp2[4:0]) ;assign rptr_bin[4] = rptr_sp2[4] ;assign rptr_bin[3] = (^rptr_sp2[4:3]) ;assign rptr_bin[2] = (^rptr_sp2[4:2]) ;assign rptr_bin[1] = (^rptr_sp2[4:1]) ;assign rptr_bin[0] = (^rptr_sp2[4:0]) ;assign af_wlevel = wptr_wclk - rptr_bin ;assign af_rlevel = wptr_bin - rptr_rclk ;assign af_half_full = (af_rlevel >= 5'h7) ;endmodule
上面给出的是深度16,宽度32的示例,大家可以使用parameter参数化定义深度和宽度,方便不同需求下的调用。除了空满信号标志,也可以根据需要做出半空半满之类信号。上面需要注意的一点就是,格雷码必须在本时钟域下DFF输出,再往另一个时钟域同步。同步FIFO呢,就不用有格雷码转换,设计更加简单,就不专门开贴描述了。
Verilog基本电路设计之四:去抖滤波
debounce电路,就是常说的去抖滤波,主要用在芯片的PAD输入信号,或者模拟电路输出给数字电路的信号上。
parameter BIT_NUM = 4 ;reg [BIT_NUM-1 : 0] signal_deb ; //always @ (posedge clk or negedge rst_n)beginif (rst_n == 1'b0)signal_deb elsesignal_deb endalways @ (posedge clk or negedge rst_n)beginif (rst_n == 1'b0)signal_o else if (signal_deb[3:1]==3'b111)signal_o else if (signal_deb[3:1]==3'b000)signal_o else ;end
上面的电路,第一个always,还兼顾了去亚稳态作用。它可以滤掉的宽度是两个clk的cycle,对于大于两个cycle而小于三个cycle的信号,有些可以滤掉,有些不能滤掉,这与signal_i相对clk的相位有关。根据希望滤除的宽度相关,换算到clk下是多少个cycle数,从而决定使用多少级DFF。如果希望滤除的宽度相对cycle数而言较大,可以先在clk下做一个计数器,产生固定间隔的脉冲,再在脉冲信号有效时使用多级DFF去抓signal_i;或者直接将clk分频后再使用。
基于RTL的FPGA数字信号处理算法设计与实现
RTL (Register Transfer Level) 是一种硬件描述语言,常用于 FPGA(Field-Programmable Gate Array)的数字电路设计。 数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行算法处理的技术。在 FPGA 上实现数字信号处理算法的过程,可以分为以下几个步骤:1. 确定设计规格: 明确数字信号处理算法的功能需求和性能指标,例如采样率、位宽、延迟等。
2. 选择适当的数字信号处理算法: 根据要求的功能和性能,选择适合的数字信号处理算法,比如离散傅立叶变换(DFT)、离散余弦变换(DCT)等。
3. RTL 设计: 基于 RTL 进行数字电路设计。使用硬件描述语言(如 Verilog 或 VHDL)描述数字信号处理算法的功能和逻辑结构,包括寄存器、组合逻辑和时序逻辑。这些代码描述了数据的传输路径和处理过程。
4. 仿真验证: 使用仿真工具验证 RTL 设计的正确性。通过输入测试数据,检查输出数据是否与预期结果一致。
5. 综合与优化: 将 RTL 设计综合转化为门级网表,然后进行优化,以实现更好的性能和效率。这一步骤可以使用综合工具完成。
6. 时序约束与布局布线: 根据 FPGA 的时序特性,对时序约束进行设置,以确保电路在目标时钟频率下的正确操作。然后执行布局布线操作,将设计映射到 FPGA 的物理资源上。
7. 下载与测试: 将设计编译成比特流文件,然后将比特流文件下载到目标 FPGA 芯片上进行测试和验证。可以使用 FPGA 开发板进行测试。
需要注意的是,数字信号处理算法的复杂性和 FPGA 的资源限制会对设计过程产生影响。在设计过程中,需要权衡算法的性能要求、硬件资源的限制和设计复杂度,以找到最佳的设计方案。 同时,有经验的 FPGA 设计工程师可以提供指导和帮助,在设计和实现过程中解决可能遇到的问题。
嵌入式物联网需要学的东西真的非常多,千万不要学错了路线和内容,导致工资要不上去!
无偿分享大家一个资料包,差不多150多G。里面学习内容、面经、项目都比较新也比较全!某鱼上买估计至少要好几十。
点击文章底部链接
相关问答
FPGA 中输出dat什么意思?在FPGA中,输出dat是指将数字数据从FPGA的输出引脚发送到其他器件或系统。FPGA通常用于数字信号处理和控制应用,因此重要的数据需要从FPGA输出。输出dat意味着F...
FPGA 具体开发流程是怎样的?您好!FPGA是数字电路设计中的三大基石(另外两个为DSP、ARM)之一,它的开发流程有区别于其他CPU的开发流程,开流程相对固定。我们将FPGA开发流程分为四个阶段...FP...
fpga 怎么锁存 信号 ?用一个四位的寄存器然后对每一位采用非阻塞式赋值如:reg[3:0]n;always@(posedgeclk)if(....)n[0]<=……//后面的数是你要锁存的数用一位...
fpga数字 时钟原理?振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计...
数字信号处理 低通滤波器的步骤?主要是处理方式,DSP串行处理;FPGA并行处理。举例,一个滤波器,DSP可能需要多个时钟节拍算下来,并且运算过程中需要中断才能跳出进行别的任务。但是FPGA可以并...
FPGA 端口输出默认值?在FPGA设计中,FPGA端口的输出默认值取决于端口的数据类型和设置的默认值。对于数字信号或逻辑类型的端口,FPGA的输出默认值是逻辑零(0)。这意味着如果没有明...
fpga 设计 数字 钟的优点?现场可编程门阵列(FieldProgrammableGateArrays,FPGA)是一种可编程使用的信号处理器件。通过改变配置信息,用户可对其功能进行定义,以满足设计需求。通过...
FPGA 主要应用?fpga应用的三个主要方向第一个方向,也是传统方向主要用于通信设备的高速接口电路设计,这一方向主要是用FPGA处理高速接口的协议,并完成高速的数据收发和...f...
为什么很多实时图像 处理 都要DSP+ FPGA 呢?DSP自己不行吗?DSP是注重数据处理。算法很重要。FPGA主要是做逻辑电路.现在很多框架都是基于DSP和FPGA的组合平台,DSP作算法,FPGA作逻辑时序!FPGA一样可以做DSP(DSP就是数字...
FPGA 中的DCM指的是什么?FPGA当中的另一个特殊资源——DCM(数字时钟管理单元DigitalClockManager)。DCM当中包含一个DLL(延迟锁定电路Delay-LockedLoop),可以提供对时...